این پروژه که با زبان برنامه نویسی MATLAB شبیه سازی شده است، فرایند زمان بندی وظایف در رایانش ابر یا Cloud Computing را با استفاده از الگوریتم کلونی مورچگان(ACO) یا Ant colony Algorithm انجام می دهد. به طور کلی در این پروژه ابتدا مجموعه ای از تسکها و تعداد های تکرار برای سیستم تعریف می گردد. سپس برای هر تسک مجموعه ای از زمانهای اجرا تعریف می شود. سپس برای کلیه تسکها یک سری اولویت و یک سری زمان های اجرا یا Execution tine تعریف می شود. پس از این مقدار دهی های اولیه ،اجرای الگوریتم کلونی مورچگان(ACO) جهت زمانبندی وظایف انجام میگردد.
الگوریتم کلونی مورچگان دارای عملگرهای مهمی است که عبارتند از:
1- تعداد فرون ها
2- جمعیت اولیه
3- تعداد انت ها
مقاله ای که میتوان از آن بهره برد تحت عنوان زیر است که می توان از آن استفاده نمود. در دموی موجود در مشخصات پروژه می توان مقاله را دانلود نمود.
A task scheduling algorithm based on Genetic algorithm and ant colony optimization in cloud computing
بنابر این در هنگام اجرای الگوریتم کلونی مورچگان(ACO) جهت زمانبندی وظایف در سیستم های رایانش ابری ابتدا تک به تک عامل به صورت تصادفی انتخاب میشوند. سپس برای هرTask که از قبل اولویت و زمان اجرا تعیین شده بود یک پارامترهای الگوریتم کلونی مورچگان محاسبه شده و زمانبندی آنها اجرامی شود. هر تسکی که دارای کمترین زمان اجرا و سریع ترین اولویت باشد، سریع تر انتخاب میشود. بنابراین الگوریتم کلونی مورچگان(ACO) به ازای کلیه تسکها ها اجرا میشود.
همانطورکه از توضیحات ارائه شده مشخص است این پروژه بسیار مناسب برای پروژه ها و پایان نامه های کارشناسی ارشد و دکتری است. این پروژه طوری نوشته شده است که میتوان برای پروژه ها و پایان نامه های مرتبط به را یانش ابری یا Computing Cloud مورد استفاده قرار گیرد. الگوریتم کلونی مورچگان(ACO) در سیستم های رایانش ابری جهت زمانبندی وظایف بسیار کاربرد داشته و مورد توجه پژوهش گران مختلف قرار گرفته است. لذا برای همین پروژه میتوان ایده هایی را مطرح نموده که به صورت موازی و همزمان عامل ها وتسک ها به صورت یکجا و موازی اجرا شوند.
لازم به ذکر است همین موضوع با سایر الگوریتم ها جهت زمان بندی وظایف در محیط های رایانش ابری و سایر زمینه های برنامه نویسی MATLAB ومتلب شبیه سازی شده است و موجود میباشد و میتوانید به صورت جداگانه سفارش دهید. الگوریتم های بهینه سازی که زمان بندی وظایف در رایانش ابری وغیره را شبیه سلزی نمودایم عبارتند از:
1- الگوریتم بهینه سازی سنجاقک یا Dragon Fly
2- الگوریتم بهینه سازی ازدحام ذرات یا PSO
3- الگوریتم ژنتیک
4- الگوریتم زنبور عسل یا ABC
بنابر این در صورتی که موفق به یافتن این پروژه ها و پیاده سازی ها نشدید میتوانید به شماره تلگرام پشتیبانی وب سایت تماس حاصل نموده تا در اختیار شما قرار داده شود.
نکته حائز اهمیتی که وجود دارد این است که این پیاده سازی بر اساس یک مقاله 2015 نوشته شده است که این مقاله را میتوانید در دانلود دموی پروژه دانلود نمائید. در صورت اینکه نیاز مند پیاده سازی هر الگوریتم و روشی در زمینه زمانبندیهای تک عامله یا چند عامله بودید کافیست با ایمیل یا تلگرام ما در تماس باشید.